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Abstract— Using a formal, unified method described in a previous paper, several sets of equations are derived
governing the thermally driven motion of highly viscous fluids. The cases covered are (i) a strongly heated fluid ;
(i) a strongly heated, shallow fluid; (iii) a strongly heated, deep liquid with a small coefficient of volume
expansion ;(iv) a weakly heated, deep fluid ;(v) a weakly heated, deep fluid with large Prandtl number ; and (vi)a
strongly heated, deep liquid with large Prandtl number and small coefficient of volume expansion. These cases
are distinguished by the orders of magnitude of the following five parameters: the Prandtl number, the
nondimensionalized depth of the fluid, the nondimensionalized coefficient of volume expansion, the ‘absolute’
Grashof number, and the heat addition parameter. In all six sets of equations obtained, the inertia terms are
absent from the momentum equations. The thermal inertia terms are absent from the energy equations for
cases (i), (ii) and (iii). The unperturbed situations arising in cases (iii}(vi) are supposed to be steady and
quiescent. Corresponding unperturbed solutions are presented in detail.

1. INTRODUCTION

IN A RECENT paper [1], a formal, unified method was
used to derive sets of approximate equations governing
the thermally driven motion of a strongly heated,
shallow fluid, and of a strongly heated, deep liquid with
a small coefficient of volume expansion. Additional
limits considered were a weakly heated, deep fluid and a
weakly heated, shallow fluid. The scaling used in all
these cases was based on the assumption that inertial
effects are of importance in at least part of the flow. It
was noted that a different scaling should be used for
highly viscous flows, such as occur in the thermally
driven motion of geophysical fluids, or of other highly
viscous fluids. Such other scalings have been used by
McKenzie et al. [2], Jarvis and McKenzie [3], and
Turcotte et al. [4]. McKenzie et al. [2] solved the
resulting equations numerically, in order to investigate
convection in the earth’s mantle. Jarvis and McKenzie
[3] studied convection in a deep, compressible fluid.
Turcotte et al. [4] presented multiple solutions for
flows in an internally heated, vertical channel with
viscous dissipation and pressure work. A number of
other authors who were interested in the effects of
viscous dissipation, variations on viscosity, pressure
work, etc. [5-12] used scalings similar to that of ref. [1].
Ostrach [5] considered internal viscous flows with
body forces, and also presented a comprehensive re-
view of laminar flows with body forces [6]. Torrance
and Turcotte [7] studied the influence on thermal
convection of large variations in viscosity. Turcotte et
al. [8] investigated the influence of viscous dissipa-
tion on Bénard convection, for a fluid with zero
compressibility. Parmentier and Torrance [9] carried
out numerical calculations concerning the influence of
a rigid boundary on mantle convection. Oxburgh and
Turcotte [10] discussed the relation between viscous
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flows and mechanisms of continental drift. Peltier [11]
developed a linear stability theory for deep fluids, with
applications to the planetary mantle. Velarde and
Cordon [12] considered the basic equations applicable
to a weakly heated, deep fluid, and discussed the role
of viscous dissipation. Further references to related
papers may be found in the works cited. The relations
between several of the works cited and the present
paper are discussed briefly in the Appendix.

The purpose of the present work is to extend the
formal method presented in ref. [1] to flows that are
highly viscous. The fundamental equations of fluid
dynamics are scaled using characteristic velocities
appropriate for such flows. The Prandtl number is
taken to be either of order 1 (Sections 3 and 4), or very
large (Sections 5 and 6). Section 3 concerns strongly
heated fluids, which can be further specified as being
shallow (Section 3.1) or as having a small coefficient of
volume expansion (Section 3.2). Sections 4 and 5 treat
weakly heated, deep fluids. Finally, Section 6 contains
results for a strongly heated, deep liquid with a small
coefficient of volume expansion.

2. BASIC EQUATIONS

The starting point of the present work is the same as
used in ref. [1], and consists of the fundamental
equations of fluid dynamics (see, e.g. [ 13, Table 10.4-1])
written in the form

op/ot+V - (pV) = 0 (continuity) (1)

ov
p[st— + (V * V)V]

1
———vp_k2_Im

5 5 T BL [V:1] (momentum) (2)



682 P. C. T. DE BoER
NOMENCLATURE

Cm (Pw/om)'? Greek symbols

¢, specific heat at constant volume, a coefficient of volume expansion,
nondimensionalized by c,,, —p~ Hdp/o0),

¢, specific heat at constant pressure, B characteristic velocity
nondimensionalized by ¢, y ratio of specific heats

g acceleration of gravity & B*gL)

Gr Grashof number, see equation (4a) or (4b) ¢ nondimensionalized depth, gL/c2,

k  unit vector in z-direction 0 temperature

K isothermal compressibility, p ~'(ép/dp), Kk thermal conductivity, nondimensionalized

L length scale by k.,

Pm Dressure 4 dynamic viscosity, nondimensionalized by

P pressure, nondimensionalized by p,, U

Pr Prandtl number, uc,/x

4. heataddition parameter, Q,, L*/(x.0.,)

Q.. characteristic rate of heat addition per unit
volume

Q rate of heat addition per unit volume,

nondimensionalized by Q,,

absolute Grashof number, o,,0,,g13/vZ

s entropy, nondimensionalized by s, = ¢ 0

t time, nondimensionalized by L/f

T temperature, nondimensionalized by 6,

V velocity, nondimensionalized by f

z

vertical coordinate, nondimensionalized by L.

v kinematic viscosity, nondimensionalized by
vm

p density, nondimensionalized by p,,

viscous part of stress tensor,

nondimensionalized by u,,A/L

¢ calCombum).

«

Subscripts
m constant reference quantities
z component in the z-direction
0,1,2 order in perturbation expansion.

o wvewr =y v
Pl 5 T "~ Prn L *
Ol
pmcpmgmﬁ

+ a@q&[%f +H(V- V)P] + Q

—5s¢;~2(1:VV) (energy). (3)

The characteristic velocity f is as yet unspecified, while
8 = B*/(yL). The parameter & = gL/c2 represents the
ratio of the physical depth L to the characteristic
hydrostatic depth ¢2/g. The parameter ¢ = c2/(cym0p)
equals (y,, — 1)/y,, for an ideal gas, and is of the order of
10~ * for liquids at a pressure of 0.1 MPa and at room
temperature. Itis assumed here that conditions are such
that ¢ is at most of order 1. The product a@is considered
to be of order 1 in the expansion procedures of the
following Sections 3-5, and to be of the same order as
the small parameter «,,A8 in Section 6. Equations (1)}~
(3) must be supplemented by the thermal equation of
state p = p(P,T), which is assumed to be given. Also
assumed given are the dependence of the specific heat
and the various transport coefficients on temperature.
Their dependence on pressure is neglected, although
this dependence could readily be taken into account if
needed. The motion is supposed to be driven by eithera
heat source distribution (Q,, #0, A@ =0), or by a
prescribed temperature difference at the boundaries
(0 = 0, A® # 0). In the following, these two cases are
referred to as case (a) and case (b), respectively.

Inref.[1], the parameter 6 for case (a) was set equal to
om0y, times the nondimensionalized strength of the heat
source. This yielded the characteristic velocity, . The
value of the quantity v, /(fL) was supposed to be at most
of order 1. For situations of present interest, the latter
quantity is supposed to be large compared with 1. In
developing sets of equations describing the motion of
the fluid, all quantities are expanded in terms of a small
parameter. Various choices are possible for this small
parameter, and for f; once these have been chosen, all
other results follow in a systematic way. The conditions
of validity for the results obtained are specified in terms
of the following dimensionless parameters : the Prandtl
number Pr_, the nondimensionalized depth ¢, the
nondimensionalized coefficient of volume expansion
0B, the absolute Grashof number r,, = «,0,9L/v2
and the heat addition parameter q,, = Q. I?/(x.0,,).
The parameter r,, is called the ‘absolute’ Grashof
number because it is based on the absolute temperature
0... In the following pages all of these parameters are
taken to be of order 1, except when indicated otherwise.
Table 1 lists their order of magnitude for the six cases
discussed in the following sections. Following ref. [1],
the Grashof number for case (a) is defined as

I2 2 2/3
Grn E—2<M) = @ulul Pra)™®  (42)
Vm pmcpm

while for case (b)

Gry, = 0,gBAONE = r AO/O,. (4b)



Thermally driven motion of highly viscous fluids 683

Table 1. Summary of orders of magnitude of parameters

Pr,, £ %O Fm m BLv,, = 6=

Strongly heated fluid o) o) o(1) «1 o) I'm %O
(Section 3, main part)

Strongly heated, shallow o(1) « 1 o) «1 o(1) T'm IOl m
fluid (Section 3.1)

Strongly heated, deep o) o(1) «1 « 1 o) T %Ol m
liquid (Section 3.2).

Weakly heated, deep o(1) o(1) o) o) «1 G/ Prm O/ (Prir.)
fluid (Section 4)

Weakly heated, deep » 1 0(1) o(1) » 1/Pry, «1 @t Pri)'?  a,0.(q2/Prir,)'?
fluid (Section 5)

Strongly heated, deep » 1 o(1) «1 oPr.Y) o) T OOl m
liquid (Section 6) («1)

The heating parameter g,, may be replaced by the Grashof number, using the identity g,, = Pr,,Gr3/?/r,.;expressions with Gr_,
are valid for both case (a) and case (b)—see equations (4a) and (4b).

The latter expression for Gr,, is obtained from the
former if q,, is replaced by Pr,rl/%(A6/6,)3%. This
replacement transforms all following results for case (a)
into results for case (b), with the understanding that the
heat source term Q in the energy equation must be set
equal to zero in the latter case. For all cases considered,
Gr,, « land B/a « 1, whereais the speed of sound. Asa
result of the latter inequality, none of the sets of
equations derived admits acoustic waves. This greatly
reduces the difficulty of solving the equations
numerically, as compared with solving the full
equations of motion for compressible fluids (cf. [1] and
references cited therein).

For future use, itisnoted that expansion of quantities
g(T)in powers of a small parameter yields to the lowest
two orders go(To) = g(To), 91(To, Ty) = Ty dg(To)/d T,
Furthermore, it is noted that the unperturbed states
arising in sections 3.2-6 are assumed to be steady and
quiescent.

3. STRONGLY HEATED FLUID

Equations of motion governing the thermally driven
flow of strongly heated, highly viscous fluids can be
obtained by setting

B = O [V = TeyVi/L) ©)

from which it follows that & = (a,0,)%g3/v%
(=0m0.rm)- Expanding in powers of § under the
assumption r,, « 1 yields to lowest order

0po/0t+V - (peVo) =0 6)
1
0=——VPo—k22 _[Vver,] (O
80,0, OO
0=V-(x,VTp) +gmQ. ®

The pressure term appearing in equation (7) contains
P,, whichisrelated to py and T, by po = p(P,, Ty,). This
pressure term can be decoupled from T, and p, by using
a second expansion, with either ¢ or «,6, as the
expansion parameter.

3.1. Strongly heated, shallow fluid
If the fluid is shallow, all quantities can be expanded
in terms of ¢:

Jolr,t5 €) = foolr, 1)+ efo(r, 1)+ O(€?).
This yields

VP, =0 ©)
P00/ 0t +V *(PooVoo) = O (10)
0=—w:0mVP0,—kal;°:—[V-roo] (1)
0 = V(k0oV To0) + 4u0- (12)

It follows from the first of these equations that the
lowest order pressure is uniform: Pyo = Pgo(t). The
resulting value of P, depends on the conditions under
which the fluid is maintained. Equation (12) is simply
the steady-state heat conduction equation. The density
differences resulting from the heat addition drive the
flow as specified by equations (11) and (10), i.e. without
inertial effects making themselves felt. When Q is
independent of time, all other quantities are
independent of time also. ‘Sudden’ changes in Q (i.e.
changes that are sudden with respect to the time scale
L/B) cause immediate changes in temperature, density,
pressure and velocity. The terms of the continuity
equation (10) yield Dirac delta functions in response to
sudden changes in Q. Gradual changes in Q cause
gradual changes in the flow; the corresponding values
of the terms of (10) are finite.

3.2. Strongly heated, deep liquid with a0, « 1
For a liquid with a small coefficient of volume
expansion (u,0,, « 1), expansion of equation (7) in
powers of a,.0,, yields to lowest order
dPgo/dz = —&poo- (13)

Similarly, the differential equation of state dIn
p = Kp,, dP —afl,, dT yields

dIn poo = KooPm dPoo. (14)
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The solution of equations (13) and (14) for the case
K = constant = K, is

Poo = €xp [a(Poo—1)] = (1 +eaz) ™"

where a = K,p,, [1]. Similarly, for KPp, = con-
stant = K p,, = a the solution is

Poo = P = [1—e(1 —a)z]* 2.

(14a)

(14b)

Expansion of equations (6)~8) yields the equations
governing the perturbed state:

V(pooVo1) =0 (15)
0=—¢&""VPy; —kpo —[V " 701] (16)
0 =V"(x50YTo0) + 4m- (17)

The lowest order velocity here is denoted by V, rather
than by V,, because it does not belong to the
unperturbed state. The relation between po,, Py, and
Too is obtained by expanding the differential equation
of state, and integrating. For K = constant = K this
yields

Too

PorL = Poo|:KumP01 - j' {%00/%x) dTloo]- (18)

1

4. WEAKLY HEATED, DEEP FLUID

Setting BL/v,, = ¢./Pr,, and expanding equations
(1)~(3) in powers of this quantity under the assumption
g < 1 yields

dPy/dz = —ep, (19)
(d/dz)(ko dTy/dz) =0 (20)
V-(poVy) =0 (21)

m 'mP1 .
0=_8am0mVP1_kam0m—[V To) (22)

PoVu[Cpo(dTo/dz) +ed(af)y] = Pry, V- (xoVTy)
+ Pr Y(8/0z)(x, dT/d2)+Q (23)
p1 = Po(KoPmP1—000nTh). (24)
The characteristic velocity, f, is now given by

B = Qnl Vo/(Kn0ruPTm) = GuVen/(LPr)  (case a)

(25a)
or
B = (amBmg L) *(A0/0,,)**
= rU2(A0/6,)* v, /L (case b) (25b)

while
6 = B*/(gL) = ghva/(PrigL’)
= 0, 0mq2/(Prirs) (case a)
or
5 = a,0.(A0/6,)°

The unperturbed state is governed only by the
barometric pressure equation (19), the condition of

(case b).
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constant heat flux (20) and the thermal and caloric
equations of state. The unperturbed state therefore
does not have to be the ‘adiabatic state’, as in the
following section. Specifically, any temperature
gradient obeying the relation d T,,/dz = 1/ko(Tp)may be
added to the unperturbed state.

5. WEAKLY HEATED, DEEP FLUID
WITH Prm > 1

The expansion parameter used for this case is
OPr,/(0,0,,). For case (a) this parameter is set equal to
QuL/(puCombmf), which is the coefficient of @ in
equation (3). For case (b)itis setequal to Pri/® A6/6,,.1t
follows that the characteristic velocity now is given by

B = (Qug L%/ PruComPT )
= (@l w/Pri)3v, /L (case a) (26a)
or
B = (2, gLAB)?/Pri3 (case b) (26b)

while

0 = (Qu/ PrComPTe)*(L/9)'
=0 Ou(g2/Prir)'?  (case a) (27a)
or
8 = a, AB/Pri3 (27b)

Equivalent expressions, applicable to both case (a)
and case (b), are SL/v,, = Gri/2/Pri3, 6 = 0,,0,,Gra/
(Pr¥3r.). Itis supposed that the quantity Pr,BL/v,, =
Pr23Grl? is of order 1. Combining this condition
with the condition &Pr./(0.0.) = Pri3Gr /r, « 1
yields 1/(Prpry) <1, ProGr%/r, <« 1. The latter
condition is equivalent to ¢, « 1 for case (a), and
to Pr,ri*A6/6,)*?« 1 for case (b). It follows
furthermore that v,0/(BL) = O(0tn0PraGri*/ry)
« 1; this result is used in the expansion procedure.

(case b).

5.1. The unperturbed state
Expanding equations (1)3) yields to lowest order

(cf. [1])

dP,/dz = —epy (28)
¢po dTy/dz = — (8ot (29)
(d/dz)(x, dTy/dz) = 0. (30)

Asnotedinref. [1],equations(29)and (30)can be solved
if, and only if,
(xab/c,)o = constant. (31

Assuming this to be the case, it follows from the
thermodynamic identity

dso = cpo dTo+(@B)odpo ' APy (32a)

together with equations (28) and (29) that ds,/dz = 0.
This means that the unperturbed state must be the so-
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called adiabatic state. Using an alternative form of the
thermodynamic identity (32a)

dso = 7 'cy0 dTo—(20)o(Kp)o *6(Po/p3) dpo  (32b)
together with equations (28) and (30) leads to
(d/d2)ps ! = eKpo/AT). (33)

This equation can be solved after the thermal and
caloric equations of state have been specified. The
results completely determine the dependence of p,, P,
and T, on z. In the following three subsections,
solutions are presented for fluids with y = constant
= ., obeying a power law equation of state (Section
5.1.1), an exponential equation of state (Section 5.1.2),
and equations of state that are partly power law, partly
exponential (Section 5.1.3).

5.1.1. Power law equation of state. If Kp = con-
stant = K p,, = aand af = constant = «,0,, = b, the
equation of state is given by

p = PT~% (34)
It then follows from equation (31) that
Cpo = Ko (35)

where use was made of the reference conditions c,
=Ko =1 at T, = 1. Assuming furthermore that the
ratio of specific heats y(T) = constant = y,,, use of
equations (28) and (33) leads to

vo(d?/dz?)vo— (ym/a)dvo/dz)® = O (36)

where vy = 1/po. Solving this equation under the
boundary conditions vy =1, P =1and T, =1 at z
= 0 yields, after some algebra,

po = [1=slym—a)z/pal”™""  (37)
Po = [1—elym—a)z/7a ™m0 (38)
Ty = [1—e(yn—a)z/ra]“P0mD10m9,  (39)

It now follows from equation (30) together with the
condition k, = 1 at z = 0 that

Ko = T(; 1+ G/a)ym—a)/(ym— 1) (40)
For an ideal gas, a=b=1 and ¢ =1-1/y,
Equations (40) and (35) together with the assumption y
= constant then yield ¢, = ¢,o = ko = 1. For a liquid
under ‘normal’ conditions(p,, = 0.1 MPa, 6, = 300K),
a=10"% b = 0.03-0.3, while y,, = 1. It then follows
that pox~14+aln(l—ez), Pox1—sz, Ty=x1
+(a/bfym— D In (1—e2), ko= l—ezx TEHOm-1,
The order of magnitude of y,—1 can be estimated
from the thermodynamic identity

y—1=yb*/a)pP/(pTc,) ~ $pb*/a.

It follows that (b/a)/(ym— 1) = 1/(b¢p) > 1, so that there
is a very strong dependence of k,on 7T, Unless ¢is close
to 1, this dependence extends only over a very limited
range of T,

5.1.2. Exponential equation of state. If a = con-
stant = o, and K = constant = K, the equation of
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state is given by
p = exp [Kppo(P—1)—a,0.(T-1D]. (41
Equation (31) then becomes
Cpo = Ko T, (42)

Again assuming that y = constant = y,, it is found
from equations (28), (33) and (41) that

Po = (1+&Kupnz/vm) ™! (43)
Py =1—(Yu/KuPr) In (1 + €K nprz/7m)  (44)
Tb =1 _(ym_ 1)(am0m)~ ! In (1 +8Kmpmz/ym)' (45)

Use of equation (30) finally leads to the following
relation for ko = ¢,o/Tp:

Ko = exXp [—nfu(To— D/ym— 1]

Equations(43)+(45) assume simplified forms for a liquid
under ‘normal’ conditions (K, p,, « 1). For such a
liquid, a0, /(y,,— 1) is of order 1/(,,6,,,). Equation (46)
thus indicates a strong dependence of k, on Ty, with k,,
decreasing as Ty, is increasing.

5.1.3. Equations of state that are part exponential, part
power law. If o = constant = «,_, and Kp = constant =
K..Pm = a, the equation of state may be written

(46)

p = P?exp [—0,0,(T—1)]. 47)

Againassumingthat y = constant = y,,, equations (28)
and (33) yield equations (37) and (38) for p, and P,,
while T, now follows from equation (47) as

T;’) =1 +(am0m)_ 1a('ym_ 1)(?m"a)_ !

xIn [1—&(yn—a)z/ym]. (48)
The corresponding result for kg = ¢,/ is
Ko = €xp [(tnbul — 1+ 70/ To— /7 —1)]. (49)

For the case of a liquid the coefficient of T, — 1 here is of
order 1/(b¢) > 1, again indicating a strong dependence
of ko on T,

Similarly, if «f =constant=oa,0,=5b K =
constant = K, the equation of state is
p=T7" exp [Kppu(P-1)]. (50)

With y = constant = y,, the results for p, and P, again
are given by (43) and (44), respectively, while

Ty = (1 +eK ypz/yg) ~0m ™ Diemdm (51)

(52)

For the case of a liquid this again indicates a strong
dependence of k, on T, with k, decreasing as Tj is
increasing.

Ko = Cpo = T(; 1 —ambm/(yom — b,

5.2. The perturbed state
The perturbation equations applying to all three
cases considered in the previous section are given by

V:(poV) =0 (53)



686
1 P1 1
Ot T e P
(54)
0T, epVy,
Pocp0|:a_1 Yy Vm]+ i
t CpO
% [—p1cpo(@0)o — pocp1(@8)o + pocpo(e),]
1 0 dT,
= ParGH [‘7 oVh) a_( T)]
oP
+ (ae)oqsbf +(V, -V)P1]+ Q
—8¢am0mm(‘foivvl) (55)
p1=poKopmP—:0,T)). (56)

Here, x; = T, d(Tp)/d Ty, ¢,y = Ty dey(Ty)/dT, and
(28), = Tyd[«(Te)])/d T,

An alternative set of equations may be obtained by
setting

T, = T'Bz, (57

where B is a constant temperature gradient of the first
order. This results in replacement of 7; by T, and in
extra terms with B in equations (55) and (56). For a
moderately deep liquid [e = O(1), K, ,p, < 1, ¢ « 1,
dT,/dz « 1, Ty = py = 1}, the only extra term in equ-
ation (55)is BV ,,onthe LHS. Similarly, foranideal gas
with ¢, = Kk, = 1 the only extra term in equation (55)
is poBV, on the LHS. This procedure may be used to
introduce an unperturbed state that is modified to first
order. The corresponding replacements p, = p’,+ 1,
and P, = P|+ P, are subject to the requirement that
the perturbation quantities 77, p, P} and V, must be
zero for the unperturbed state. Substituting this
requirement into the equation of state (56) and the
momentum equation (54) yields the following
equations for the first order unperturbed quantities :

P1u = Po(KoPmP 1y —%o0mB2)
dPlu/dz = —&P1u

These equations can be solved under the boundary
conditions p,, = P;, = 0 at z = 0. For a moderately
deep liquid this leads to

(58)
(59)

1= pll _amomBZ
P, = P} +ea,,0,,Bz%/2,
while for an ideal gas
p1 = p1+BlA(—1+T5 " +1n T))—z/Ty]po  (60)
P, = P, +BA(—1+4+T5 ' +1n T,)P,, (61)

where A = ¢ [y,/(ym—1)]?, while p,, P, and T, are
given by equations (37)39) with a=b = 1. Use of
these results leads to replacement of p, by p) and of P,
by P} in equations (54)}56).

P. C. T. pE Boer

6. STRONGLY HEATED, DEEP LIQUID
WITH Proy»>1 AND anfm«1

Setting § = r,v,/L as in Section 3, it again follows
that 6 = o0, r.. Expanding equations (1)+3) and the
thermal equation of state in powers of «,,0,, yields for
the unperturbed state

dPy/dz = —sp,
dIn py = K¢p,, dP,,.

(62)
(63)

These equations are essentially the same as equations
(13)and (14). For K = constant = K, their solution is
given by equation (14a), for KPp,, = constant = K_p,,
byequation (14b). Itis again assumed that Py and p, are
independent of time. Assuming furthermore that Prr,,
(the ‘absolute’ Rayleigh number) and g, are both of
order 1, the perturbed state is governed by the following
set of equations :

Ve(poV,) = 0 (64)
1
0= ——VP,—kp;—[V"] (65)
oT;
PoCho [—atﬂ +(V4 -V)To]
Ll iy o 66
= Pror. KoV 1) Pror. Q. (66)

The relation between p,, P, and T, is obtained as
described in Section 3 [see equation (18)]. Equations
closely related to those given in the present section have
previously been presented by Jarvis and McKenzie [3]
(see Appendix).

7. CONCLUDING REMARKS

The six sets of equations derived in the preceding
pages apply to the flow of thermally driven, highly
viscous fluids under various conditions. These
conditions are characterized by the orders of
magnitude of the parameters Pr., ¢, a0, r,, and g,
The inertia terms are absent from the momentum
equations of all six sets. Furthermore, the thermal
inertia terms are absent from the energy equations of
the three sets derived in Section 3 for strongly heated
fluids ; these three sets are closely related. The three sets
derived in Sections 4, 5 and 6 have different energy
equations, while their continuity and momentum
equations are essentially identical. An arbitrary heat
flux of zeroth order may be added to the unperturbed
state found in Section 4. The unperturbed state found in
Section Sis completely determined if the ratio of specific
heats and the thermal equation of state are specified.
This state is the same as that of the weakly heated, deep,
slightly viscous fluid considered in ref. [1, Section 4]. It
is possible in this case to add a constant temperature
gradient of the first order; this results in extra terms in
the energy equation.

The energy equations (8), (12), (17) and (23) of
Sections 3 and 4 do not contain any derivatives with
respect to time. These equations determine the
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corresponding temperature fields, independent of the
momentum and continuity equations. The results of
Sections 3 and 4 apply to both liquids and gases.
However, application of the results of Section 3 to a gas
involves a very strict limitation on the depth of the gas,
in view of the condition r,, « 1.

Therelation p; = —a,#,.T;, which leads to the usnal
form of the Boussinesq approximation, is applicable to
moderately deep liquids [Kop,, « 1 in equations (18),
(24), (56) or (67)]. For other cases, the relation between
py and T involves P,. Determination of p, then
requires extraction of P, from the momentum equation
[seeequation(16)of Section 3.2, equation (22) of section
4, equation (56) of Section 5, and equation {67) of
Section 6]. Similarly, determination of p, in equation
(7) of Section 3 requires extraction of P, from the same
equation. The determination of Pyt) appearing in
Section 3.1 is discussed in ref. [1].

Allsets of equations derived represent limiting cases,
strictly valid only in the limit that the expansion
parameter equals zero. Application to actual flows may
be expected to introduce errors having the same order
of magnitude as that of the expansion parameter. All
sets are based on a systematic expansion procedure,
involving expansion of all quantities of interest in only
one parameter at a time. A second expansion is used
only in Sections 3.1 and 3.2. All terms appearing in the
equations are of order 1, which facilitates numerical
solution.

The sets of equations of Sections 5 and 6 apply to
fluids with Prandtl number much larger than one, and
are applicable to geophysical flows (see Appendix and
references cited therein).
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APPENDIX

McKenzie et al. [2] considered a fluid with infinite Prandtl
number and constant specific heat, internal heating rate,
coefficient of expansion, thermal conditivity and viscosity.
Their equation of state (4) is based on the assumption of
neligible compressibility (K yp,,, « 1). Their main perturbation
equations (10}{12) follow term-by-term from the present
equations (64)-{66) using the assumptions listed.

The equations of Jarvis and McKenzie [3] correspond to
those of the present Section 6, except that they retained terms
of order of the ‘dissipation parameter’ Di = a,,0,,6¢ in the
energy equation. They considered a two-dimensional
geometry. The equation of state incorporated in their
equations is based on setting the Gruneisen parameter
a/(pc,K) equal to a constant. Together with the assumptions
o = constant and ¢, = constant, this leads to pK = con-
stant = K, and hence to

Po = KyupuPo = exp(—eKprm2) (A

To
p1=KnpuPy— J (A2)

o
po— dTy,
1 &y
The present equation (A1) is in agreement with the expression
for the reference state used by Jarvis and McKenzie, except for
a factor 7 in the argument of the exponential. Because y = |
+ 0(01,,8,,)* [see the thermodynamic identity in the discussion
following equation (40)], this difference is negligible. The
difference arises because Jarvis and McKenzie took the
reference state to be adiabatic, so that dsy/dz = 0. It follows
from the present resultsthat the entropy of the reference state is
given by s, = { ¢, dT,. Taking account of the points noted,
themain equations(A1}(A4) of ref. [3] can be derived from the
equations given in the present Section 6.

Turcotte et al. [4] chose the characteristic velocity f to be
vo/(Di Pr,L). They used depPr,, as the expansion parameter
for p and T, and {8e¢Pr, Nen,,0,,) as the expansion parameter
for P. Inclusion of the factor ex,,0,, in the latter parameter in
effect rescales the pressure P,. Their main equations (28) and
(29 follow directly from the present equations (54) and (55) for
the situation considered in ref. [4]. The treatment of ref. [4]
leading up to equations (28) and (29) is partly based on
Pr,, = O(1); this part is comparable to ref. [1, Section 4].
Equation (25) of ref. [4] contains two misprints, and misses
some of the terms of the corresponding equation (26) of
ref. {1].

The basic equations {1}4} of Torrance and Turcotte [7]
can bederived from equations (54)(58)of ref. [ 1] by neglecting
terms of order K ,p,,,, and setting ¢, = Kk, = 1 while allowing
Ho to be a function of T,. The latter equations apply to a
strongly heated, deep liquid with a small coefficient of thermal
expansion.
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The procedure followed by Turcotte et al. [8] is similar to
that of ref. [1] for a weakly heated, deep fluid. Essentially, it
consists of setting f = v, Pr.,/L, and expanding in powers of
&Pr,,.. This yields equations that are equivalent to equations
(26)28) of ref. [1].

Equations (4.17)+4.19) of Oxburgh and Turcotte [10] are
closely related to equations (26)+28) of ref. [1]. The main
difference between these two sets of equations is that the term
(0/0x;)(k 8DiT,/0x,)in equation (4.19) is of zeroth order in the
present context, and therefore does not appear in equation
(28). Instead, it leads to the condition of zero vertical heat
flux—equation (23a) of ref. [ 1] and equation (30) of the present
paper. As a result, the reference adiabatic state given by
equations (4.5144.7) of ref. [10] is different from the
unperturbed state described in Section 5.1 of the present paper.
Apartfrom these differences, equations(4.17)(4.19) of ref. [ 10]
can be derived from equations (26)—28) of ref. [1].

Peltier [11] considered a deep liquid in which the
unperturbed state is maintained by a heat source distribution.
His treatment basically corresponds to that of Section 4 of ref.
[1]. However, he did not make use of the two forms of the
conditions dsy/dz =0 [equations (32a) and (32b) of the
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present paper]. These conditions follow from the requirement
that the unperturbed state must be independent of the
perturbation velocity V,,, and retain their validity in the
presence of the zeroth order heat source distribution.
Equation (14) of ref. [11] contains terms with dT;/dz and
dP,/dz. In the context of ref. [1], these terms appear in the
zeroth order equation, and lead to the condition ds,/dz = 0.
Apart from these terms, Peltier’s equation (14) can be derived
from the energy equation (28) of ref. [1].

Velarde and Cordon [12] reconsidered the case studied by
Turcotte et al. [8]. They linearized the equation of state with
respect to a reference state with constant density and
temperature—equation (2.5) of [ 12]. This s the reference state
for a moderately deep liquid (see [1, Section 4]). The resulting
perturbed state is governed by equations (33)~(35) of ref. [1].
The adiabatic hydrostatic reference field considered in Section
3 of ref[12, equations (3.4-3.6)] does not satisfy the conditions
for the unperturbed state given in ref. [1] and in the present
Section 5. The sets of equations (3.10)+3.12) and (3.15)3.17)
given in ref. [12] for the perturbed state incorporate the
unperturbed state (3.4)3.6), and differ from the correspond-
ing results (26)—(28) of ref. [1].

MOUVEMENT D’ORIGINE THERMIQUE DES FLUIDES FORTEMENT VISQUEUX

Résumé—En utilisant une méthode unifiée décrite précédemment, plusieurs systémes d’équations sont
obtenus pour le mouvement d’origine thermique de fluides fortement visqueux. Les cas couverts sont: (1) un
fluide fortement chauffé; (2) un fluide peu profond, trés chauffé; (3) un liquide profond, trés chauffé, avec un
faible coefficient de dilatation volumique; (4) un fluide profond et faiblement chauffé; (5) un fluide profond
faiblement chauffé, 4 grand nombre de Prandtl; (6) un liquide fortement chauffé et profond avec un grand
nombre de Prandtl et un faible coefficient de dilatation. Ces cas se distinguent par les ordres de grandeur des
cing paramétres suivants: le nombre de Prandtl, la profondeur adimensionnelle du fluide, le coefficient
adimensionnel de dilatation, le nombre de Grashof “absolu”, et le paramétre d’addition de chaleur. Dans les
six systémes d’équations obtenus, les termes d’inertie sont absents des équations de quantité de mouvement.
Les termes d’inertie thermique sont absents des équations d’énergie pour les cas 1, 2 et 3. Les situations
non perturbées dans les cas 3 4 6 sont supposés permanentes et de repos. Les solutions non perturbées
correspondantes sont présentées en détail.

THERMISCH ANGETRIEBENE STROMUNGEN IN FLUIDEN MIT GROSSER ZAHIGKEIT

Zusammenfassung — Unter Verwendung einer bereits friiher beschriebenen Methode wurden verschiedene
Gleichungssysteme hergeleitet, welche die thermisch angetricbene Stromung hochviskoser Fluide
beschreiben. Dabei werden folgende Fille behandelt: (1) stark beheiztes Fluid, (2) stark beheiztes Fluid
geringer Tiefe, (3) stark beheiztes Fluid groBer Tiefe mit geringem Volumenausdehnungskoeffizienten, (4)
schwach beheiztes Fluid groBer Tiefe, (5) schwach beheiztes Fluid groBer Tiefemit groBer Prandtl-Zahl und (6)
stark beheiztes Fluid groBer Tiefe mit groBer Prandtl-Zahl und kleinem Volumenausdehnungskoeffizienten.
Diese Fille unterscheiden sich um GroBenordnungen bei der Prandtl-Zahl, der dimensionslosen Tiefe des
Fluids, dem dimensionslosen Volumenausdehnungskoeffizienten, der “absoluten” Grashof-Zahl und dem
Heizparameter. In allen sechs Gleichungssystemen entfillt die Trégheitskraft in den Bewegungsgleichungen.
Die Speicherterme entfallen in den Energiegleichungen bei den Fillen (1), (2) und (3). Der ungestdrte Zustand
in den Fillen (3) bis (6) wurde als stationdr und ruhend angenommen. Entsprechende Losungen werden
detailliert dargestelit.

JBMXEHUE CUIBHOBS3KUX XKUJAKOCTEN, BEI3BBAHHOE HATPEBOM

Annoranusi—HeCKOIbKO CHCTEM ypaBHEHHH [BHKCHMS CHJILHOBS3KHX XHAKOCTCH BhIBENCHBI C HCMOJIb-
3oBaHHeM GOPMaNbHOrO YHHGHUIHPOBaHHOIO METOAA, ONMCAHHOTO B Npeablaywei pabore. Paccmatpu-
BAIOTCA CJIy¥aH CHJIBHO HarpeToif kuaxoctH (1), caos Masoit ToJIMHBI CHABLHO HarpeTol xuakocty (II),
€10€B GOBbIION TOJMIMHBI CHJIBHO HArpeTOd XHUAKOCTH C MaJIbIM KO3(¢UIHEHTOM OOBLEMHOTO PACHIN-
penus (III), cnabo narperoit xkuaxoctu (IV), cnabo HarpeToit XKUAKOCTH C BbICOKHM 3HAYCHHEM 4HCIA
MMpanatis (V) ¥ CMABHO HATPETOM KUAKOCTH ¢ GONbIINM YHcIoM TTpaHATIIA U MasbiM KO3GQPUIHEHTOM
obweMHoro pactunpenus (VI). YkasaHHble CllyvaH pa3iMyaloTCs MeEXAY coOoil HO MOpAAKY BEIMYHH
uucna Ilpauaras, pa3sMepHOH TOJIUMHBI CIOf, Pa3MEepHOro xo3gPuimMenTa o6BEMHOTO PACILMPEHHS,
“abcomoTHoro ” uncia [pacroga u napamerpa TeMIlepaTypHOTO Hanopa. Bece ypaBHeHHs: HMNyJIbCa He
COINEPXAT MHEPLIUOHHbBIE WIEHBL, a dHeprum juig ciyydaes (I), (1I) n (HI)}—TemioBbie HHEPUMOHHBIE YIEHBI.
HeBo3amyuiennble coctosHusa B ciydasx (IIIHVI) nosararoTcss ycTaHOBHBLIMMHCH M yCTOMYMBLIMM.
[1puBeaeHBI COOTBETCTBYIOIIHME HEBOIMYILIEHHbIE PELIIECHHMS.



