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Abstract- Using a formal, unified method described in a previous paper, several sets of equations are derived 
governing the thermally driven motion ofhighly viscous fluids. The cases covered are(i) a strongly heated fluid ; 
(ii) a strongly heated, shallow fluid; (iii) a strongly heated, deep liquid with a small coefficient of volume 
expansion ;(iv) a weakly heated, deep fluid ;(v) a weakly heated, deep fluid with large Prandtl number ; and (vi) a 
strongly heated, deep liquid with large Prandtl number and small coefficient of volumeexpansion. These cases 
are distinguished by the orders of magnitude of the following five parameters: the Prandtl number, the 
nondimensionalized depth of the fluid, the nondimensionalized coefficient of volume expansion, the ‘absolute’ 
Grashof number, and the heat addition parameter. In all six sets of equations obtained, the inertia terms are 
absent from the momentum equations. The thermal inertia terms are absent from the energy equations for 
cases (i), (ii) and (iii). The unperturbed situations arising in cases (ii+ are supposed to be steady and 

quiescent. Corresponding unperturbed solutions are presented in detail. 

1. INTRODUCTION 

IN A RECENT paper [l], a formal, unified method was 
used to derive sets of approximate equations governing 
the thermally driven motion of a strongly heated, 
shallow fluid, and of a strongly heated, deep liquid with 
a small coefficient of volume expansion, Additional 
limits considered were a weakly heated, deep fluid and a 
weakly heated, shallow fluid. The scaling used in all 
these cases was based on the assumption that inertial 
effects are of importance in at least part of the flow. It 
was noted that a different scaling should be used for 
highly viscous flows, such as occur in the thermally 
driven motion of geophysical fluids, or of other highly 
viscous fluids. Such other scalings have been used by 
McKenzie et al. [2], Jarvis and McKenzie [3], and 
Turcotte et al. [4]. McKenzie et al. [2] solved the 
resulting equations numerically, in order to investigate 
convection in the earth’s mantle. Jarvis and McKenzie 
[3] studied convection in a deep, compressible fluid. 
Turcotte et al. [4] presented multiple solutions for 
flows in an internally heated, vertical channel with 
viscous dissipation and pressure work. A number of 
other authors who were interested in the effects of 
viscous dissipation, variations on viscosity, pressure 
work, etc. [5-121 used scalings similar to that ofref. [l]. 
Ostrach [S] considered internal viscous flows with 
body forces, and also presented a comprehensive re- 
view of laminar flows with body forces [6], Torrance 
and Turcotte [7] studied the influence on thermal 
convection of large variations in viscosity. Turcotte et 
al. [S] investigated the influence of viscous dissipa- 
tion on Benard convection, for a fluid with zero 
compressibility. Parmentier and Torrance [9] carried 
out numerical calculations concerning the influence of 
a rigid boundary on mantle convection. Oxburgh and 
Turcotte [lo] discussed the relation between viscous 

flows and mechanisms of continental drift. Peltier [ 1 l] 
developed a linear stability theory for deep fluids, with 
applications to the planetary mantle. Velarde and 
Cordon [12] considered the basic equations applicable 
to a weakly heated, deep fluid, and discussed the role 
of viscous dissipation. Further references to related 
papers may be found in the works cited. The relations 
between several of the works cited and the present 
paper are discussed briefly in the Appendix. 

The purpose of the present work is to extend the 
formal method presented in ref. [l] to flows that are 
highly viscous. The fundamental equations of fluid 
dynamics are scaled using characteristic velocities 
appropriate for such flows. The Prandtl number is 
taken to be either of order 1 (Sections 3 and 4), or very 
large (Sections 5 and 6). Section 3 concerns strongly 
heated fluids, which can be further specified as being 
shallow (Section 3.1) or as having a small coefficient of 
volume expansion (Section 3.2). Sections 4 and 5 treat 
weakly heated, deep fluids. Finally, Section 6 contains 
results for a strongly heated, deep liquid with a small 
coefficient of volume expansion. 

2. BASIC EQUATIONS 

The starting point of the present work is the same as 
used in ref. [l], and consists of the fundamental 
equations offluid dynamics (see, e.g. [13, Table 10.4-l]) 
written in the form 

ap/at +v -(pV) = 0 (continuity) (1) 

P[g +wvw] 
= -&VP-k, - z[V*7] (momentum) (2) 
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NOMENCLATURE 

cm (Pm/PJ” Greek symbols 
c, specific heat at constant volume, a coefficient of volume expansion, 

nondimensionalized by c,, -pm’(3p/3U) P 
cp specific heat at constant pressure, p characteristic velocity 

nondimensionalized by cpm ratio of specific heats 
g acceleration of gravity i BZl(&) 
Gr Grashof number, see equation (4a) or (4b) & nondimensionalized depth, gL/ci 
k unit vector in z-direction 0 temperature 
K isothermal compressibility, p ‘(dp/@), K thermal conductivity, nondimensionalized 
L length scale by k, 
pm pressure p dynamic viscosity, nondimensionalized by 
P pressure, nondimensionalized by pm &II 
Pr Prandtl number, ~c,,/K v kinematic viscosity, nondimensionalized by 
qm heat addition parameter, Q,, L’/(K,~,) “m 
Q, characteristic rate of heat addition per unit p density, nondimensionalized by P,,, 

volume r viscous part of stress tensor, 
Q rate of heat addition per unit volume, nondimensionalized by p,J/L 

nondimensionalized by Q, 4 &(c,J,). 
r, absolute Grashof number, a,O,gL?/v~ 
s entropy, nondimensionalized by s, = cpm&,, 
t time, nondimensionalized by L//l Subscripts 
T temperature, nondimensionalized by t&, m constant reference quantities 
V velocity, nondimensionalized by p Z component in the z-direction 
z vertical coordinate, nondimensionalized by L. 0, 1,2 order in perturbation expansion. 

PC, ;+(VV 
[ 1 =$ycVT) 

+aw[g +w,,l, PmE$ 

-&qbz(r:VV) (energy). (3) 

The characteristic velocity p is as yet unspecified, while 
6 = /l’/(gL). The parameter E 3 gL/ck represents the 
ratio of the physical depth L to the characteristic 
hydrostatic depth c,$‘g. The parameter 4 I c~(c,,&,,) 
equals (yrn - 1)/r, for an ideal gas, and is of the order of 
10e4 for liquids at a pressure of 0.1 MPa and at room 
temperature. It is assumed here that conditions are such 
that 4 is at most oforder 1. The product a&s considered 
to be of order 1 in the expansion procedures of the 
following Sections 335, and to be of the same order as 
the small parameter a,AB in Section 6. Equations (l)- 
(3) must be supplemented by the thermal equation of 
state p = p(P,T), which is assumed to be given. Also 
assumed given are the dependence of the specific heat 
and the various transport coefficients on temperature. 
Their dependence on pressure is neglected, although 
this dependence could readily be taken into account if 
needed. The motion is supposed to be driven by either a 
heat source distribution (Q, # 0, A0 = 0), or by a 
prescribed temperature difference at the boundaries 
(Q, = 0, A@ # 0). In the following, these two cases are 
referred to as case (a) and case (b), respectively. 

In ref. [ 11, the parameter 6 for case (a) was set equal to 
a,,@, times the nondimensionalized strength of the heat 
source. This yielded the characteristic velocity, /?. The 
value ofthe quantity v,,,/(pL) was supposed to be at most 
of order 1. For situations of present interest, the latter 
quantity is supposed to be large compared with 1. In 
developing sets of equations describing the motion of 
the fluid, all quantities are expanded in terms of a small 
parameter. Various choices are possible for this small 
parameter, and for fl; once these have been chosen, all 
other results follow in a systematic way. The conditions 
of validity for the results obtained are specified in terms 
of the following dimensionless parameters : the Prandtl 
number Pr,,,, the nondimensionalized depth E, the 
nondimensionalized coefficient of volume expansion 
a,&,, the absolute Grashof number rm = a&,&/v; 
and the heat addition parameter qm E Q,~/(K,&,,). 
The parameter r, is called the ‘absolute’ Grashof 
number because it is based on the absolute temperature 
8,. In the following pages all of these parameters are 
taken to be of order 1, except when indicated otherwise. 
Table 1 lists their order of magnitude for the six cases 
discussed in the following sections. Following ref. [l], 
the Grashof number for case (a) is defined as 

= (q,rJPr,)z’3 (4a) 

while for case (b) 

W 
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Table 1. Summary of orders of magnitude of parameters 

Pr, 

Strongly heated fluid 
(Section 3, main part) 

Strongly heated, shallow 
fluid (Section 3.1) 

Strongly heated, deep 
liquid (Section 3.2). 

O(1) 

O(1) 

O(1) 

O(1) 

<< 1 

O(1) 

O(1) 

O(1) 

<< 1 

<< 1 

<< 1 

<< 1 

O(1) 

O(1) 

O(1) 

a8r m mm 

am&rm 

atlr mmm 

Weakly heated, deep O(1) O(1) O(1) O(1) <c 1 4 Jpr, d&dMr~r,) 
fluid (Section 4) 

Weakly‘heated, dkep >> 1 O(1) O(1) >> l/Pr, cc 1 (q,r,lPri) ‘j’ am0,(q~Pr4r,)‘i3 
fluid (Section 5) 

Strongly heated, deep >> 1 O(1) << 1 0( Pr; ‘) O(1) r, amkrm 
liquid (Section 6) (<< 1) 

The heating parameter qm may be replaced by the Grashof number, using the identity q,,, = Pr,Grz”/r, ; expressions with Gr, 
are valid for both case (a) and case (b)-see equations (4a) and (4b). 

The latter expression for Gr, is obtained from the 
former if q,,, is replaced by Pr,r~‘(A~/6,,,)“~‘. This 
replacement transforms all following results for case (a) 
into results for case(b), with the understanding that the 
heat source term Q in the energy equation must be set 
equal to zero in the latter case. For all cases considered, 
Gr, << 1 and b/a << 1, where a is the speed ofsound. As a 
result of the latter inequality, none of the sets of 
equations derived admits acoustic waves. This greatly 
reduces the difficulty of solving the equations 
numerically, as compared with solving the full 
equations of motion for compressible fluids (cf. [l] and 
references cited therein). 

For future use, it is noted that expansion ofquantities 
g(T) in powers of a small parameter yields to the lowest 

two orders MC,) = KK,), MC,, Ti) = T1 dg(T,)/dT,. 
Furthermore, it is noted that the unperturbed states 
arising in sections 3.2-6 are assumed to be steady and 
quiescent. 

3. STRONGLY HEATED FLUID 

Equations of motion governing the thermally driven 
flow of strongly heated, highly viscous fluids can be 
obtained by setting 

p = tl,&gLz/v,( = r,vJL) (5) 

from which it follows that 6 = (a,&,Jzg~/v~ 
(=aJ,r,). Expanding in powers of 6 under the 
assumption rm cc 1 yields to lowest order 

apo/at+~-(Po~o) = 0 (6) 

1 
O=- -VP,-k$ -[V.z,] 

&a,@, 
(7) 

mm 

0 = v*(K,,V&)+q,Q. (8) 

The pressure term appearing in equation (7) contains 
P,, which is related to pO and To by p,, = p(P,,, T,). This 
pressure term can be decoupled from T, and p,, by using 
a second expansion, with either E or a,&,, as the 
expansion parameter. 

3.1. Strongly heated, shallow$uid 
If the fluid is shallow, all quantities can be expanded 

in terms of E : 

fob, t; 4 = fodr, 4 + &lh t) + O(E2). 

This yields 

VP,, = 0 

aPooiat + v - hovoo~ = 0 

(9) 

(10) 

1 
O=- ~VP,,-k$ -[V.q,,] (11) 

&a,& mm 

0 = v-(KooV%)+qmQ. (12) 

It follows from the first of these equations that the 
lowest order pressure is uniform: P,, = P,,(t). The 
resulting value of P,, depends on the conditions under 
which the fluid is maintained. Equation (12) is simply 
the steady-state heat conduction equation. The density 
differences resulting from the heat addition drive the 
flow as specified by equations (11) and (lo), i.e. without 
inertial effects making themselves felt. When Q is 
independent of time, all other quantities are 
independent of time also. ‘Sudden’ changes in Q (i.e. 
changes that are sudden with respect to the time scale 
L/B) cause immediate changes in temperature, density, 
pressure and velocity. The terms of the continuity 
equation (10) yield Dirac delta functions in response to 
sudden changes in Q. Gradual changes in Q cause 
gradual changes in the flow ; the corresponding values 
of the terms of (10) are finite. 

3.2. Strongly heated, deep liquid with a,&, << 1 
For a liquid with a small coefficient of volume 

expansion (amem << l), expansion of equation (7) in 

powers of a,,,&,, yields to lowest order 

dP,,/dz = - cpoo. (13) 

Similarly, the differential equation of state d In 
p = Kp, dP--0, dT yields 

d ln poo = Koop, dPoo. (14) 



constant heat flux (20) and the thermal and caloric 
equations of state. The unperturbed state therefore 
does not have to be the ‘adiabatic state’, as in the 
following section. Specifically, any temperature 

gradient obeying the relation dT,/dz = l/rc,(T,)may be 
added to the unperturbed state. 
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The solution of equations (13) and (14) for the case 
K = constant = K, is 

PO0 = exp [a(P,, - l)] = (1 +&a~)- ’ (144 

where a = K,,,p,,, [l]. Similarly, for KPp, = con- 
stant = K,p, = a the solution is 

PO0 = P”,, = [l -&(l -a)z]“‘(‘? (14b) 

Expansion of equations (6)--(g) yields the equations 
governing the perturbed state : 

V*h,V,,) = 0 (15) 

0 = -~-lVP~~--kp~~-[V.s~~] (16) 

0 = V * (JGX,VT,,) + amQ. (17) 

The lowest order velocity here is denoted by V,, rather 

than by V,, because it does not belong to the 
unperturbed state. The relation between per, PO, and 
T,, is obtained by expanding the differential equation 
of state, and integrating. For K = constant = K, this 
yields 

The expansion parameter used for this case is 
6Pr,,,/(a,&,,). For case (a) this parameter is set equal to 
QmL/(pmcpmf+,,#I), which is the coefficient of Q in 
equation (3). For case(b) it is set equal to Prz3 AW,. It 
follows that the characteristic velocity now is given by 

P = (QmdkJpmcpmPrm)1'3 

or 

while 

4. WEAKLY HEATED, DEEP FLUID 

Setting /?L/v, = q,,,/Pr,, and expanding equations 
(lH3) in powers of this quantity under the assumption 

q,,, << 1 yields 

dP,/dz = --up,, (19) 
(d/dz)& dT,/dz) = 0 (20) 

v*(Pclv,) =o (21) 

O=-SW-ks-[Vr,,] (22) 
mm mm 

Po~zCc,oWWW +44401 = Pri ‘V -(~vTd 
+P~;‘(~/~z)(Jc, dT’,/dz)+Q (23) 

~1 = po(KopmP, -a,kr,). (24) 

The characteristic velocity, 8, is now given by 

B = Q,L ~,,,kAPr,) = q,v&J+,) (cue 4 
(254 

or 

6 = (Q,a~Jp,c,,Pr32'3(L/s)"3 
= a,0,(q~Pr~r~1/3 (case a) (27a) 

or 

6 = a,AO/Pr~~3 (case b). (27b) 

Equivalent expressions, applicable to both case (a) 
and case (b), are BL/v, = Grz’/Pr,!,‘“, 6 = u,&,Gr,,J 

(Pr, 2/3r,). It is supposed that the quantity Pr,BL/v, = 
Pr2/3Gr1’2 is of order 1. Combining this condition 
wirh th: condition 6Pr,J(a,&) = Pri3Gr,,,/r, << 1 
yields l/(Pr,r,) CC 1, Pr,Grz’/r, << 1. The latter 
condition is equivalent to q,,, << 1 for case (a), and 
to Pr,r~*(Af?/B,) 3/2 << 1 for case (b). It follows 
furthermore that v,S/(pL) = 0(a,B,Pr,Gr~2/r,) 
<< 1; this result is used in the expansion procedure. 

5.1. The unperturbed state 
Expanding equations (l)-(3) yields to lowest order 

(cf. Cl11 
dP,/dz = - &pO (28) 

Cp,, dT,/dz = -(a@,&$ (29) 

(d/dz)(ic, dT,/dz) = 0. (30) 

Asnotedinref. [l],equations(29)and(30)canbesolved 
if, and only if, 

(dl/c,), = constant. (31) 

Assuming this to be the case, it follows from the 
thermodynamic identity 

ds, = cp,, dTe +(a&$p,y 1 dP, (32a) 

together with equations (28) and (29) that ds,/dz = 0. 
This means that the unperturbed state must be the so- 

p = (a,B,gL)“2(Ae/e,)3’2 

= r,!,/2(Ae&,,)3i2v,,,/L (case b) (25b) 

while 

6 = B2/(gL) = q;V,?yJ(Pr:gL3) 

= a,B,q~(Pr~r,) (case a) 

or 

6 = a,e,(Ae/e,J3 (case b). 

The unperturbed state is governed only by the 
barometric pressure equation (19), the condition of 

5. WEAKLY HEATED, DEEP FLUID 

WITH Pr,,, >> 1 

= (qmr,,,/Pr~)‘/3v,,,/L (case a) (26a) 

p = (a,gLAO)1~2/Pr~3 (case b) (26b) 
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called adiabatic state. Using an alternative form of the 
thermodynamic identity (32a) 

ds, = r, ‘GO dT, -(&(KP), ‘@P,lp@ dp, (32b) 

together with equations (28) and (30) leads to 

(d/dz)G ’ = eK~m/y(T). (33) 

This equation can be solved after the thermal and 
caloric equations of state have been specified. The 
results completely determine the dependence of pa, P, 
and T, on z. In the following three subsections, 
solutions are presented for fluids with y = constant 
= ym, obeying a power law equation of state (Section 
5.1.1), an exponential equation of state (Section 5.1.2), 
and equations of state that are partly power law, partly 
exponential (Section 5.1.3). 

5.1.1. Power law equation of state. If Kp = con- 
stant = Kd,,, = a and cr0 = constant = a,,&, = b, the 
equation of state is given by 

p = P”T-b. (34) 

It then follows from equation (31) that 

c&lo = Ko (35) 

where use was made of the reference conditions cpo 
= rco = 1 at To = 1. Assuming furthermore that the 
ratio of specific heats y(T) = constant = y,,,, use of 
equations (28) and (33) leads to 

v,(d2/dzZ)v,-(y,/a)(dv,/dz)2 = 0 (36) 

where v. = l/p,. Solving this equation under the 
boundary conditions v. = 1, PO = 1 and To = 1 at z 
= 0 yields, after some algebra, 

p. = [ 1 -.z(y, - a)z/y,]‘l(Ym-‘) 

PO = [l-E(y,-a)z/y~y=‘(Ym-s) 

(37) 

(38) 

To = [ 1 _ ,$y, -a)Z/ym]Wb)(~m- M’m--o)~ (39) 

It now follows from equation (30) together with the 
condition rco = 1 at z = 0 that 

Ico = Toi+(b/s,(y,-rr)/(y,-l) (40) 

For an ideal gas, a = b = 1 and C$ = 1 -l/y,. 
Equations (40) and (35) together with the assumption y 
= constant then yield cpo = cVo = ~~ = 1. For a liquid 
under ‘normal’ conditions (p, = 0.1 MPa, em = 300 K), 
a = 10e4, b = 0.03SO.3, while y,,, = 1. It then follows 
that p. x l+a In (l-&z), PO x l-&Z To x 1 
+(a/b)(y,- 1) In (1 -EZ), ~~ x 1 --EZ x +/d/(Ym - 1) 

The order of magnitude of y,,,- 1 can be estimated 
from the thermodynamic identity 

y- 1 = y(bz/a)4P/(pTc,) x @‘/a. 

It follows that (b/a)/(y,- 1) x I/@$) >> 1, so that there 
is a very strong dependence of rcO on T,. Unless E is close 
to 1, this dependence extends only over a very limited 
range of T,,. 

5.1.2. Exponential equation of state. If u = con- 
stant = ec, and K = constant = K,, the equation of 

state is given by 

p = exp [K,,,&P- 1)-a,,,B,,,(T- I)]. 

Equation (3 1) then becomes 

(41) 

CPO = icOTO. (42) 

Again assuming that y = constant = y,,,, it is found 
from equations (28), (33) and (41) that 

PO = (I+ ~Kn#S,zh’m)- ’ (43) 

PO = 1 -_(%,,/K,,,P~ In (1 +G~/Y,,,) (44) 

To = 1 -(ym- l)(a,&,J-’ In (1 +~K,,,p,,,z/yJ. (45) 

Use of equation (30) finally leads to the following 
relation for rco = cpo/To : 

x0 = exp C - ~,MT, - MY, - 111. (46) 

Equations (43)-(45) assume simplified forms for a liquid 
under ‘normal’ conditions (K,,JI,,, << 1). For such a 
liquid, a,&&, - 1) is of order l/(a,$,). Equation (46) 
thus indicates a strong dependence of ~~ on To, with ~~ 
decreasing as To is increasing. 
5.1.3. Equations of state that are part exponential, part 
power law. If a = constant = a, and Kp = constant = 
K,,,pm = a, the equation of state may be written 

p = P” exp [-aJ,(T-l)]. (47) 

Again assuming that y = constant = ym, equations (28) 
and (33) yield equations (37) and (38) for p. and PO, 
while To now follows from equation (47) as 

To = l+(cr,B,)-‘a(y,-l)(y,-a)-’ 

x In Cl -e(y, - Wr,l. (48) 

The corresponding result for ~~ = cpo/To is 

rco = exp c(a,kx - 1 + r,,,/aXTo - O/Y,- 1)3. (49) 

For the case of a liquid the coefficient of To - 1 here is of 
order l&j) >> 1, again indicating a strong dependence 
of ICY on To. 

Similarly, if ae = constant = ume, G b, K= 
constant = K,, the equation of state is 

p = TWb exp [K,,,p,,,(P- l)]. (50) 

Withy = constant = y,,, the results for p. and PO again 
are given by (43) and (44), respectively, while 

To = (1 +eK,,~~,z/y,)-(~~- ‘W.JL (51) 

‘Co = Cpo 
= T-‘-~&.,i(Ym-~) 

0 (52) 

For the case of a liquid this again indicates a strong 
dependence of ~~ on To, with ICY decreasing as To is 
increasing. 

5.2. The perturbed state 
The perturbation equations applying to all three 

cases considered in the previous section are given by 

V~(PoV,) = 0 (53) 



686 P. C. T. DE BOER 

x c - PlC,O(~@O - Poc,lw)o + Poc,o(~Q11 

1 = pr;/3Gr;Z 
1 +Q 

- edk 1 pr2/3Gr’/2 (TO :“l) 
m m 

(55) 

PI = Po~~llPmP, -44w,). (56) 

Here, rcr = Tl drc(T,)/dT,, cpl = Tl dc,(T,)/dT, and 

W), = T~4~WbWdT,. 
An alternative set of equations may be obtained by 

setting 

Tl = T;Bz, (57) 

where B is a constant temperature gradient of the first 
order. This results in replacement of Tl by T; and in 
extra terms with B in equations (55) and (56). For a 
moderately deep liquid [E = O(l), K,p, cc 1, 4 << 1, 
dT,/dz << 1, To = p,, = 11, the only extra term in equ- 
ation (55) is BV,, on the LHS. Similarly, for an ideal gas 
with cpO = rcO = 1 the only extra term in equation (55) 
is poBY,, on the LHS. This procedure may be used to 
introduce an unperturbed state that is modified to first 
order. The corresponding replacements p , = p’, + plu 
and P, = P’] + P ,” are subject to the requirement that 
the perturbation quantities T’,, p’,, P’, and V, must be 
zero for the unperturbed state. Substituting this 
requirement into the equation of state (56) and the 
momentum equation (54) yields the following 
equations for the first order unperturbed quantities : 

plu = P~(K~P~P~~--~~~B~ 

dP,,/dz = -cplu. 

These equations can be solved under the boundary 
conditions plu = PI, = 0 at z = 0. For a moderately 
deep liquid this leads to 

p1 = p; - a,e,Bz 

P, = P; +&u,e,Bz2/2, 

while for an ideal gas 

(58) 

(59) 

p1 =p;+B[A(-l+TT,‘+ln To)-z/Tolpo (60) 

P, = P;+BA(-l+TT,‘+ln T,)P,, (61) 

where A = E- ‘[y,J(y,- 1)12, while PO, PO and To are 
given by equations (37H39) with a = b = 1. Use of 
these results leads to replacement of p1 by p; and of P, 
by P; in equations (54H56). 

0. STRONGLY HEATED, DEEP LIQUID 

WITH Pr,,, >> 1 AND a,,&ctl 

Setting /l = r,vdI, as in Section 3, it again follows 
that 6 = a&,,r,. Expanding equations (l)(3) and the 
thermal equation of state in powers of a,,$, yields for 
the unperturbed state 

dP,/dz = - spO (62) 

d In p. = K,p, dP,. (63) 

These equations are essentially the same as equations 
(13) and (14). For K = constant = K, their solution is 
given by equation (14a), for KPp, = constant = K,p, 
by equation (14b). It is again assumed that PO and p. are 
independent of time. Assuming furthermore that Pr,r, 
(the ‘absolute’ Rayleigh number) and q,,, are both of 
order 1, the perturbed state is governed by the following 
set of equations : 

V*(PoV,) = 0 

0 = -+VP1-kp,-[Vr,, 

(64) 

(65) 

POC~O z +(V, *Vi, 1 
+v*(K,vT,)+* Q. (66) 

m* mm 

The relation between pl, P, and To is obtained as 
described in Section 3 [see equation (18)]. Equations 
closely related to those given in the present section have 
previously been presented by Jarvis and McKenzie [3] 
(see Appendix). 

7. CONCLUDING REMARKS 

The six sets of equations derived in the preceding 
pages apply to the flow of thermally driven, highly 
viscous fluids under various conditions. These 
conditions are characterized by the orders of 
magnitude of the parameters Pr,, E, a e r In In, m, and q,,,. 

The inertia terms are absent from the momentum 
equations of all six sets. Furthermore, the thermal 
inertia terms are absent from the energy equations of 
the three sets derived in Section 3 for strongly heated 
fluids ; these three sets are closely related. The three sets 
derived in Sections 4, 5 and 6 have different energy 
equations, while their continuity and momentum 
equations are essentially identical. An arbitrary heat 
tlux of zeroth order may be added to the unperturbed 
state found in Section 4. The unperturbed state found in 
Section 5 is completely determined if the ratio of specific 
heats and the thermal equation of state are specified. 
This state is the same as that of the weakly heated, deep, 
slightly viscous fluid considered in ref. [l, Section 41. It 
is possible in this case to add a constant temperature 
gradient of the first order ; this results in extra terms in 
the energy equation. 

The energy equations (8) (12), (17) and (23) of 
Sections 3 and 4 do not contain any derivatives with 
respect to time. These equations determine the 
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corresponding temperature fields, independent of the 
momentum and continuity equations. The results of 
Sections 3 and 4 apply to both liquids and gases. 
However, application of the results of Section 3 to a gas 
involves a very strict limitation on the depth of the gas, 
in view of the condition r,,, << 1. 

The relation pi = - cr,B,T,, which leads to the usual 
form of the Boussinesq approximation, is applicable to 
moderately deep liquids [K,p,,, << 1 in equations (18), 
(24), (56) or (67)]. For other cases, the relation between 
PI and TI involves P,. Determination of pr then 
requires extraction ofP, from the momentum equation 
[see equation( 16) of Section 3.2, equation (22)ofsection 
4, equation (56) of Section 5, and equation (67) of 
Section 61. Similarly, determination of pO in equation 
(7) of Section 3 requires extraction of PO from the same 
equation. The determination of Pee(t) appearing in 
Section 3.1 is discussed in ref. [l]. 

All sets of equations derived represent limiting cases, 
strictly valid only in the limit that the expansion 
parameter equals zero. Application to actual flows may 
be expected to introduce errors having the same order 
of magnitude as that of the expansion parameter. All 
sets are based on a systematic expansion procedure, 
involving expansion of all quantities of interest in only 
one parameter at a time. A second expansion is used 
only in Sections 3.1 and 3.2. All terms appearing in the 
equations are of order 1, which facilitates numerical 
solution. 

The sets of equations of Sections 5 and 6 apply to 
fluids with Prandtl number much larger than one, and 
are applicable to geophysical flows (see Appendix and 
references cited therein). 
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APPENDIX 

McKenzie et al. [2] considered a fluid with infinite Prandtl 
number and constant specific heat, internal heating rate, 
coefficient of expansion, thermal conditivity and viscosity. 
Their equation of state (4) is based on the assumption of 
neli~blecompr~sibi~ty(~ep~ << l).~eirmain~rturbation 
equations (lOH12) follow term-by-term from the present 
equations (64)-(66) using the assumptions listed. 

The equations of Jarvis and McKenzie [3] correspond to 
those of the present Section 6, except that they retained terms 
of order of the ‘dissipation parameter’ Di = CC,,&,,E~ in the 
energy equation. They considered a two-dimensional 
geometry. The equation of state incorporated in their 
equations is based on setting the Gruneisen parameter 
a/(pc,K) equal to a constant. Together with the assumptions 
a = constant and c, = constant, this leads to pK = wn- 
stant = X,, and hence to 

pO = &pmP, = exp ( - EK~~z) (Al) 

Pl = K&nPi - 
I 

TO 
p,t dTb. (.42) 

I 
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The procedure followed by Turcotte et al. [8] is similar to 
that of ref. [l] for a weakly heated, deep fluid. Essentially, it 
consists of setting /I = v,Pr JL, and expanding in powers of 
6Pr,. This yields equations that are equivalent to equations 
(26H28) of ref. [ 11. 

Equations (4.17H4.19) of Oxburgh and Turcotte [lo] are 
closely related to equations (26)-(28) of ref. [l]. The main 
difference between these two sets ofequations is that the term 
(a/ax,)@ 13DirJaxJ in equation (4.19) is of zeroth order in the 
present context, and therefore does not appear in equation 
(28). Instead, it leads to the condition of zero vertical heat 
flux-equation(23a)ofref. [l] andequation(30)ofthepresent 
paper. As a result, the reference adiabatic state given by 
equations (4.5H4.7) of ref. [lo] is different from the 
unperturbedstatedescribedin Section 5.1 ofthepresentpaper. 
Apart from thesedifIerences,equations(4.17)-(4.19)ofref. [lo] 
can be derived from equations (26H28) of ref. [l]. 

Peltier [11] considered a deep liquid in which the 
unperturbed state is maintained by a heat source distribution. 
His treatment basically corresponds to that of Section 4 of ref. 
[l]. However, he did not make use of the two forms of the 
conditions ds,/dz = 0 [equations (32a) and (32b) of the 

present paper]. These conditions follow from the requirement 
that the unperturbed state must be independent of the 
perturbation velocity V,,, and retain their validity in the 
presence of the zeroth order heat source distribution. 
Equation (14) of ref. [l l] contains terms with dT,/dz and 
dP,/dz. In the context of ref. Cl], these terms appear in the 
zeroth order equation, and lead to the condition ds,/dz = 0. 
Apart from these terms, Peltier’s equation (14) can be derived 
from the energy equation (28) of ref. [l]. 

Velarde and Cordon [12] reconsidered the case studied by 
Turcotte et al. [8]. They linearized the equation of state with 
respect to a reference state with constant density and 
temperature-equation(2.5) of [12]. Thisis thereference state 
for a moderately deep liquid (see [l, Section 41). The resulting 
perturbed state is governed by equations (33)-(35) of ref. [l]. 
The adiabatic hydrostatic reference field considered in Section 
3 of ref [12, equations (3.43.6)] does not satisfy the conditions 
for the unperturbed state given in ref. [l] and in the present 
Section 5. The sets of equations (3.10H3.12) and (3.15x3.17) 
given in ref. [12] for the perturbed state incorporate the 
unperturbed state (3.4H3.6), and differ from the correspond- 
ing results (26)-(28) of ref. [l]. 

MOUVEMENT D’ORIGINE THERMIQUE DES FLUIDES FORTEMENT VISQUEUX 

Resume-En utilisant une methode unifiee d&rite precedemment, plusieurs systemes d’iquations sont 

obtenus pour le mouvement d’origine thermique de fluides fortement visqueux. Les cas couverts sont : (1) un 
fluide fortement chauffe; (2) un fluide peu profond, trds chauffe; (3) un liquide profond, tris chat&, avec un 
faible coefficient de dilatation volumique; (4) un fluide profond et faiblement chauffe; (5) un fluide profond 
faiblement chauffe, a grand nombre de Prandtl ; (6) un liquide fortement chauffe et profond avec un grand 
nombre de Prandtl et un faible coefficient de dilatation. Ces cas se distinguent par les ordres de grandeur des 
cinq paramttres suivants: le nombre de Prandtl, la profondeur adimensionnelle du fluide, le coefficient 
adimensionnel de dilatation, le nombre de Grashof “absolu”, et le parametre d’addition de chaleur. Dans les 
six systtmes d’equations obtenus, les termes d’inertie sont absents des equations de quantite de mouvement. 
Les termes d’inertie thermique sont absents des equations d’energie pour les cas 1, 2 et 3. Les situations 
non perturbies dans les cas 3 a 6 sont supposes permanentes et de repos. Les solutions non perturb&es 

correspondantes sont present&es en detail. 

THERMISCH ANGETRIEBENE STRGMUNGEN IN FLUIDEN MIT GROSSER ZAHIGKEIT 

Zusammenfassung-Unter Verwendung einer bereits friiher beschriebenen Methode wurden verschiedene 
Gleichungssysteme hergeleitet, welche die thermisch angetriebene Striimung hochviskoser Fluide 
beschreiben. Dabei werden folgende FIlle behandelt : (1) stark beheiztes Fluid, (2) stark beheiztes Fluid 
geringer Tiefe, (3) stark beheiztes Fluid groBer Tiefe mit geringem Volumenausdehnungskoeffizienten, (4) 
schwach beheiztes Fluid grol3er Tiefe, (5) schwach beheiztes Fluid groDer Tiefe mit grol3er Prandtl-Zahl und (6) 
stark beheiztes Fluid groDer Tiefe mit groger Prandtl-Zahl und kleinem Volumenausdehnungskoeffizienten. 
Diese Falle unterscheiden sich urn GriiBenordnungen bei der Prandtl-Zahl, der dimensionslosen Tiefe des 
Fluids, dem dimensionslosen Volumenausdehnungskoeffizienten, der “absoluten” Grashof-Zahl und dem 
Heizparameter. In allen sechs Gleichungssystemen entfSllt die Trlgheitskraft in den Bewegungsgleichungen. 
Die Speicherterme entfallen in den Energiegleichungen bei den Fallen(l), (2) und (3). Der ungestijrte Zustand 
in den Fallen (3) bis (6) wurde als stationlr und ruhend angenommen. Entsprechende Liisungen werden 

detailliert dargestellt. 

ABIDKEHME CHJIbHOBJI3KMX XGIJIKOCTEH, BbI3BAHHOE HAFPEBOM 

AHHOTalBn--HeCKOJlbKO CACTeM ypaBHet&i IIBmKeHaB CBJtbHOBP3KBX XWnKOCTeti BbtBeneHbI C ACnOJIb- 

30BaHBeM $OpManbHOrO yHB@HuBpOBaHHOrO MeTOL,a, OnHCaHHOrO B npeL,bInymeii pa6ore. PaCCMaTpB- 

BPIOTCB CJIyYaA CnJIbHO HX~TOfi ~WKOCTB (I), CAOB MaJtOii TOJU,HHbt CnJtbHO HarpCTO~ EAAKOCTII (II), 

CJIOeB 6onbmoti TOJtmBHbI CAJtbHO HarpeTOii EWKOCTB C MaJtbrM K03++RUBeHTOM o6aeMnoro paCmB- 

penna (III), cna6o tiarpero% xoin~ocrn (IV), cna6o Harperos E~~KOCTB c BbtcoKBM 3Ba~emieM mzna 
ffpaHLtTJls (V) A CAJtbHO HarpeTOfi XGiLlKOCTB C 60JIbmBM WiCJIOM t-fpaHnTJia A MaJtbIM K03+$A4AcHTOM 

o6beMHOro pacmBpeHeR (VI). YKasaHHbre cnyvaa pa3neuaroTcn Memay co6oi no nOpBn~y BenHWfH 

‘tBCJta ftpaHAT.“s, pa3MepHOe ToJtmBHbI CJ‘OR, pa3MepHOrO K03+$8uAeHTa 06WZMHOrO paC”lHpCHHR, 

“~~COJIIOTHO~O” Wcna rpaCrO+a A napaMeTpa TeMnepaTypHoro Hanopa. Bee ypaBHeHm3 BMnynbca Be 

conepxaT Bnepuaomibte qnenbr, a srteprmi QnB cnygaee (I), (II) n (III)-rennosbte enepunonnbte ‘inenbr. 

HeBO3MymeHHbIe COCTOBHBB B CJtyBaBX (IIIHVI) nOnaraK)TCa yCTaHOBHBmNMBCR N yCTOi+IWBbIMB. 

ffpnBeLteHbt COOTBeTCTByMLWie HeBO3MymeHHbte pemeHBB. 


